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Reproducible Network Benchmarks with 
CONCEPTUAL 

Los Alainos National Laboratory, Los Alamos, NM 87545, USA, 
pakinOlan1. gov, 

WWW home page: h t t p  : //www.c3.lanl.gov/"pakin 

Abstract. A cornerstone of scientific progress is the ability to reproduce 
experimental results. However, in the context of network benchmarking, 
system complexity imped6s a researcher's attempts to record all of the 
information needed to exactly reconstruct a network-benchmarking ex- 
periment. Without this information, results may be misinterpreted and 
are unlikely to be reproducible. 

This paper presents a tool called CONCEPTUAL which simplifies 
most aspects of recording and presenting network performance data. 
CONCEPTUAL includes two core components: (1) a compiler for a high- 
level, domain-specific programming language that makes it possible to 
specify arbitrary communication patterns tersely but precisely and (2) a 
complementary run-time library that obviates the need for writing (and 
debugging!) all of the mundane but necessary routines needed for bench- 
marking] such as those that calibrate timers, compute statistics, or out- 
put log files. The result is that CONCEPTUAL makes i t  easy to present 
network-performance data in a form that promotes reproducibility. 

1 Introduction 

Network and messaging-layer performance measurements are used for a vari- 
ety of purposes, such as explaining or predicting system and application per- 
formance, procuring large-scale systems, and monitoring improvements made 
during system deployment or messaging-layer development. Unfortunately, fol- 
lowing a truly scientific approach to  measuring network performance is not easy. 
In the absence of clear but precise experimental descriptions, the consumers 
of network performance data may draw incorrect conclusions, leading to  dire 
consequences. 

Consider a standard ping-pong latency test, which reports the time needed 
t o  send a message of a given size from one node to  another by calculating half 
of the measured round-trip time. Fig. l(a) shows the result of running a latency 
test atop two messaging layers and networks: p4 [I] (based on TCP) over Gigabit 
Ethernet [2, Sect. 31 and Tports over Quadrics Elan 3 [3]. The latency test is 
implemented using MPI (41 and both the p4 and Tports layers are integrated 
as MPICH devices (51. The latency program was compiled with GCC 2.96 using 
the -03 and -g flags. All experiments were performed across the same - otherwise 
idle - pair of nodes, each containing two 1 GHz Itanium 2 processors (one unused). 
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Fig. 1. Two variations of a latency test 

Each data point represents the arithmetic mean of 11 executions of the latency 
test. As Fig. l(a) shows, the p4/GigE version of the latency test exhibits lower 
latency than the Tports/Elan 3 version on all message sizes from 0 bytes to 
2 kilobytes. Furthermore, the p4/GigE latency increases smoothly while the 
Tports/Elan 3 latency varies erratically. 

Figure l (b)  also shows the result of running an MPI-based latency test. This 
test was run atop the same two messaging layers and networks as the previous 
test. The same compiler was used and the experiments were performed across 
the same nodes of the same cluster. As before, each data point represents the 
arithmetic mean of 11 sequential executions of the latency test and, as before, 
nothing else was running on the system. However, Fig. l (b)  delivers the opposite 
message from that delivered by Fig. 1 (a): Fig. I (b) shows that Tports/Elan 3 
is significantly faster than p4/GigE. Also, the Tports/Elan 3 curve shown in 
Fig. l ( b )  is smooth, unlike the erratic curve presented in Fig. l (a) .  

Naturally, something is different between the experiment/experimental setup 
used in Fig. l (a)  from that used in Fig. l(b) - but what? Although we defer the 
answer to  Sect. 2 the point is that even with all of the experiinental setup de- 
scribed above, the performance results are untrustworthy; some critical piece of 
information is missing. This simple exercise demonstrates the problem with the 
status quo of network benchmarking: performance data that lacks a complete 
and precise specification is subject to  misinterpretation. This paper proposes a 
solution in the form of a programming environment called CONCEPTUAL which 
was designed specifically to  simplify the implementation of reproducible network- 
performance tests. The rest of this paper is structured as follows. Sect. 2 moti- 
vates and describes CONCEPTUAL and showcases some sample output. Sect. 3 
places CONCEPTUAL in context, discussing the types of tasks for which CON- 
CEPTUAL is best suited. Finally, Sect. 4 draws some conclusions about the 
implications of using CONCEPTUAL for network performance testing. 



2 CONCEPTUAL 

Fig. 1 on the facing page shows how subtle differences in experimental setup 
can lead to  radically different performance results. CONCEPTUAL (= “Network 
Correctness and Performance Testing Language”) is a programming environment 
designed to  help eliminate the ambiguities that can limit the usefulness of perfor- 
mance results. I t  centers around a high-level, domain-specific language created 
for the express purpose of writing network benchmarks. The design decision 
to  introduce a new language instead of merely creating a performance library 
stemmed from the desire to make CONCEPTUAL programs more readable than 
a jumble of function calls and control structures. Although a library can cer- 
tainly encapsulate all of the functionality needed for the scientific acquisition 
and reporting of data and a textual or pseudocode description of a benchmark 
can convey the basic idea, CONCEPTUAL combines the best features of both 
approaches: 

1. Like pseudocode or prose but unlike the combination of a general-purpose 
programming language and a library, CONCEPTUAL programs are English- 
like and can largely be read and understood even by someone unfamiliar 
with the language. 

2. Like the combination of a general-purpose programming language and a 
library but unlike pseudocode or prose, CONCEPTUAL programs precisely 
describe all aspects of a benchmark, most importantly the implementation 
subtleties that may be omitted from a description yet have a strong impact 
on performance (as demonstrated by the previous section’s description of 
Fig. 1). 

The CONCEPTUAL compiler, written in Python with the SPARK compiler 
framework (61, sports a modular design that enables generated code to  target 
any number of lower-level languages and messaging layers.’ Hence, the same 
high-level CONCEPTUAL program can be used, for example, to  compare the 
performance of multiple messaging layers, even semantically disparate ones such 
as MPI and OpenMP. The generated code links with a run-time library that 
takes care of most of the mundane aspects of proper benchmarking, such as cal- 
culating statistics, calibrating timers, parsing command-line options, and logging 
a wealth of information about the experimental setup to  a file. 

The CONCEPTUAL language provides too much functionality to  describe in 
a short paper such as this; the reader is referred to  the CONCEPTUAL user’s 
manual [7] (available online) for coverage of the language’s syntax and seman- 
tics. In lieu of a thorough description of the language, we now present a few 
trivial code samples with some accompanying explanation to convey a basic feel- 
ing for CONCEPTUAL. Listing 1 presents the complete CONCEPTUAL source 
code that produced the data for Fig. l (a )  and Listing 2 presents the complete 
CONCEPTUAL source code that produced the data for Fig. l(b).  One thing 
to  note is that the language is very English-like; CONCEPTUAL programs are 

Currently, only C + MPI is implemented; more combinations are under development. 



LISTING 1. Source code that produced Fig. l (a)  
rnsgsize is "Message s ize  ( b y t e s ) "  and comes from "--bytes" or "-b" 
with d e f a u l t  0 .  
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10 

All t a s k s  synchronize then  
t a s k  0 r e s e t s  i t s  coun te r s  then  
t a sk  0 sends a rnsgsize byte  message t o  t a sk  1 then  
t a s k  1 sends a msgsize byte  message t o  t a sk  0 then  
t a s k  0 logs e lapsed_usecs /2  as "1 /2  R?T". 

LISTING 2. Source code that produced Fig. l (b)  
msgsize is "Message s ize  ( b y t e s ) "  and comes from "--bytes" or "-b" 
with de fau l t  0 .  

All t a s k s  synchronize then  
fo r  100 r e p e t i t i o n s  { 

t a sk  0 r e s e t s  i t s  coun te r s  then  
t a s k  0 sends a msgsize byte  message to  t a sk  1 then  
t a sk  1 sends a msgsize byte  message t o  t a sk  0 then  
t a sk  0 logs t h e  median of elapsed_usecs/2 a s  " 1 / 2  RTf" 

1 

intended to read much like a human would describe a benchmark to  another 
human. Although one can probably grasp the gist of Listings l(a)-l(b) without 
further explanation, the following details may be slightly unintuitive: 

- The first statement in Listings l (a)  and I.(b) parses the command line, as- 
signing the argument of --bytes (or simply -b) to a variable called msgsize. 

- To simplify the common case, sends is synchronous and implies a matching 
synchronous receives. Either or both operations can be asynchronous. CON- 
CEPTUAL also supports data verification and arbitrary buffer alignment. 

- The CONCEPTUAL run-time library automatically maintains the 
elapsed-usecs ("elapsed time in microseconds") counter and many other coun- 
ters, as well. 

If not yet obvious, the explanation of the performance discrepancy shown in 
Fig. 1 is that the code shown in Listing 1 measures only a single ping-pong while 
the code shown in Listing 2 reports the median of 100 ping-pong iterations. 
Unlike p4, which uses TCP and therefore goes through the operating system 
for every message, Tports is a user-level messaging layer that  communicates di- 
rectly with the Elan. However, the Elan, which can transfer data from arbitrary 
addresses in an application's virtual-memory space, must pin (i.e., prevent the 
paging of) message buffers before beginning a DMA operation. Because pinning 
requires both operating-system intervention and a sequence of costly I/O-bus 
crossings, a large startup overhead is incurred the first time a message buffer 



is utilized. The code shown in Listing 1 does not amortize that overhead while 
the code shown in Listing 2 does. Neither latency test is unreasonable; although 
codes like Listing 2 are more common in the literature, codes like Listing 1 are 
used when they more accurately represent an application's usage pattern. For 
example, two of the three execution modes of Worley's COMMTEST bench- 
mark (http: //www.csm.ornl.gov/"worley/studies/commtest.html), which is 
used to  help tune climate and shallow-water modeling applications [SI, specify 
that each message be sent only once. 

Although Listings 1-2 state simply "task 0 logs (something)", the CONCEP- 
TUAL run-time library takes this as a cue to  write a set of highly detailed log 
files, one per task. Each log file contains information about the execution environ- 
ment, a list of all environment variables and their values, the complete program 
source code, the program-specific measurement data, and a trailer describing the 
resources used during the program's execution. 

A sample, unmodified log file is shown below. This particular file - selected 
arbitrarily from those used in the preparation of this paper - corresponds to  the 
lower-right data point of Fig. l(a) and was written by task 0. 
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un~~unnuuuunnnnuuuu#uuuuuunnuuuuuuuu#uuu#uuuuunuuunnnuu#nnnnnnn#nunununnunu 
# --..-.....-------.. 
n soNCaPluaL log file 
# ~~~~~..~.~~~....... 
n coNCaPTuaL version: 0.5 
n coNCePTuaL baskand: c ~ p l  
U Emcutable name: /bome/pakl~/arc/coNCaPTuaL/duallatency/l~t~~~yl-t~p 
11 Working directory: /ho.e/pakin/srs/coHC*PT"aL/duallarency 
u Command line: /home/pakln/src/coNCsPTuaL/duallatency/l~t~~~yl-tcp --bytas-2048 --logflla-latonsyl-tcp-ZM8-run4-Xd.log 
n Number of taeka: 2 
u Prcs*aiaor (0-1): 0 
n Ho*t name: all 
n Architecture: la64 
I Opratlng nyatem: Llnux 2.4.21-3.5qanst e2 SUP Thu lug 7 10:51:04 I(DT 2003 
II CPU ceunt: 2 
It CPU vendor: GenulnoIntol 
It CPU model: 0 
t CPU HHr: 1000 
11 OS p a p  slze: 16384 bytes 
n Physlcsl memory: 2052489116 bytes 
11 Library sompllortllnkar: 8cc 

It Llbray compiler optlone: -03 -8 
P Library llnksr options: -1papl -111 -1popt 
0 Library sompllsr d e :  LP64 
U Average timer overhead [Inline assembly codal: (1 microsecond 
U Hlsroeacond timar Increment: 1.00563 */- 0.220925 microseconds (Ideal: 1 +/-  0) 
11 F'rosssa CPU-the increment [getruaageol: 976.58 +/- 0.496045 microseconds (Ideal: 1 +/- 0 )  
U WARNING: Process tlmer exhibits poor ganularlty. 
n Number of mlnuten after which to kill the job (-1-navar): -1 
n Seed for the random-number gansrator: -465105857 
U Message slze (bytes): 2048 
n Log file tamplare: lntancyl-tcp-2048-r4-Xd.log 

n Log creation time: Wed Nov 
U 
n Environment variables * . . . . . . . . . . . . . . . . . . . . .  
n CVS-RSH: /uar/bln/esh 
U DISPLAY: 1ocalhost:lO.O 
n DYNINSTAPLRT~LIQ: / b o m o / p o k i n / d y n l n ~ t A P I - 3 . O / l l b / l 3 8 6 - ~ ~ w n - l l ~ ~ 2 . ~ / l l M ~ i ~ ~ t A P I ~ ~ T . ~ ~ . l  
1 OYNINST-ROOT: /home/pakln/dynlnatAPI-3.0 
n EDITOR: /usr/bln/emass 

11 H O W :  /hono/pakln 
U HOST: all 
u HOSTTYPE: unknown 
X LD.LIBPARY-PATH: / u ~ e r a / p a k l n / l l b : / u e r l l i b : / ~ ~ ~ / ~ ~ ~ / l l b : / ~ p t / S ~ W ~ p ~ ~ / l l b : / ~ ~ ~ / d t / l l b : / ~ ~ ~ / ~ p ~ ~ ~ l ~ / l l b : / ~ ~ ~ / X l l R 6 / l l b : / ~ ~ ~ / l ~ ~ ~ l / ~ ~ / l l b : / ~ ~ ~ / l ~ ~ ~ l / l l b : / ~ ~ ~ / ~ ~ b l l b : / ~ ~ ~ ~ ~  
n LOCNAHE: pakln 

U HACHTYF'E: unknown 
n HAIL: /var/mall/pakln 
n HAWATH: /u~r/man:/opt/SUNW~pro/man:lusr/dt/man:/u~r/~panula/mao:/u~r/XllR6/ma.:/usr/losal/gnu/aan:/u~r/local/man:/usr/shara/man:/usr/lanl/m~ 
e HOZILLA~HOKE: /usr/loc~l/=Ftesapa/java 
U NAHE: Scott Pakln 
n ORGANIZATION: Loe Alamos National Lab 
U OSTYPE: llnur 

n Log creator: Scott P a k h  
5 15:36:56 2003 

e cnm:  ccs3 

u LPDEST: 1vy 
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The key point is that  a CONCEPTUAL log file contains not just performance 
measurements but also a detailed description of how they were produced, which 
helps third parties understand the performance 'results. Such complete log files 
are also of use t o  the people who generated them: How often does a researcher 
struggle to  use old data in a new paper or presentation, not remembering if 
results. dat was produced with the environment variable MPI-BUFFER-MAX set 
to  2048 or 1048576; whether the experiment was run with the older 2.8,GHz pro- 
cessors or the newer 3.2 GHz processors; or, even if the test transmitted messages 
synchronously or asynchronously? With CONCEPTUAL, old log files present a 
complete picture of an experiment, making them far more valuable than mea- 
surement data alone. 

3 Discussion 

The programs presented in Sect. 2 are simple to  express in CONCEPTUAL but - 
apart from the creation of such content-rich log files - would be almost as sim- 
ple to express in any other language. In general, CONCEPTUAL'S usefulness 
increases with the complexity of the communication pattern being tested. For 
example, the 4 x 4 synchronous-pipe pattern described in a MITRE report 191 
requires 248 lines of LSE, a terse but low-level language for describing communi- 
cation benchmarks. Because CONCEPTUAL is a high-level language, the same 
code (in fact, a more general M x N synchronous pipe) can be expressed in only 
26 lines of CONCEPTUAL - far less than the LSE version and not significantly 
more than what would be needed for a textual description of the communication 
pattern. I t  is not merely short code lengths that make CONCEPTUAL useful; 
the increased coniprehensibility of a CONCEPTUAL program over the equiva- 
lent program written in a lower-level language and the increased precision of a 



CONCEPTUAL program over a prose description make CONCEPTUAL a useful 
tool for any sort of network performance testing. 

CONCEPTUAL is not intended t o  be a replacement for existing 
connnunication-benchmark suites such as the Pallas MPI Benchinarks [lo] or 
SKaMPI [ l l ] .  Rather, its real strengths lie in its ability to  rapidly produce cus- 
tomized tests of network and messaging-layer performance: 

- A CONCEPTUAL mock-up of an application may make “what if” scenarios 
more easy to  evaluate than would rewriting the original application. For in- 
stance, a user can evaluate how altering the communication pattern (caused, 
for example, by a different data decomposition) should affect overall applica- 
tion performance. A CONCEPTUAL mock-up of SweepSD [I21 is currently 
under development. 

- System and application performance problems can be diagnosed by generat- 
ing a simple but representative communication benchmark and successively 
refining it to  hone in on the source of the problem. (This methodology was 
recently used to  nearly double the performance of an application running on 
ASCI Q [13].) 

- Network-performance tests unique to a particular domain or otherwise unfa- 
miliar to  a target audience can be presented in a precise, easily understood 
manner. 

The CONCEPTUAL source code will soon be available from http:// 
www. c3.  lanl .gov/“pakin/so f tware /. Making the software open-source enables 
researchers to scrutinize the code, so that CONCEPTUAL can be used as a 
trustworthy replacement for C as a network-benchmarking language. 

4 Conclusions 

In the domain of network benchmarks, recorded performance data cannot blindly 
be trusted. As demonstrated in Sect. 1, subtle variations in experimental setup - 
even for a benchmark as trivial as a latency test - can lead to grossly varying 
performance curves, even leading to  different conclusions being drawn about 
relative performance. The problem is that  the complexity of current computer 
systems makes it difficult (not to  mention tedious) to  store a sufficiently thorough 
depiction of an experiment that was run and the experimental conditions under 
which it ran. As a consequence, performance tests can rarely be reproduced or 
validated in a scientific manner. Even unpublished performance data used locally 
suffers from lack of reproducibility; a researcher may unearth old measurements 
but have no record of what benchmark produced them or what parameters were 
utilized in the process. 

This paper proposes the CONCEPTUAL programming environment as a so- 
lution to  the problem of irreproducible network performance results. CONCEP- 
TUAL tries to  codify the best practices in network and messaging-layer per- 
formance testing into a high-level domain-specific language and accompanying 



run-time library. CONCEPTUAL was designed specifically to support and fa- 
cilitate all aspects of network and messaging-layer performance testing, from 
expressing complex communication patterns tersely yet unambiguously through 
storing in self-contained log files everything needed t o  reproduce an experiment. 
Using CONCEPTUAL, a researcher can easily present in a paper or report a 
benchmark’s actual source code - not pseudocode, which may inadvertently omit 
critical details. Although it will always be possible t o  misrepresent network per- 
formance, CONCEPTUAL makes it much easier t o  be meticulous. 
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